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ABSTRACT

An αΩ dynamo, combining shear and cyclonic convection in the tachocline, is believed to generate

the solar cycle. However, this model cannot explain cycles in fast rotators (with minimal shear) or in

fully convective stars (no tachocline); analysis of such stars could therefore provide key insights into

how these cycles work. We reexamine ASAS data for 15 M dwarfs, 11 of which are presumed fully

convective; the addition of newer ASAS-SN data confirms cycles in roughly a dozen of them, while

presenting new or revised rotation periods for five. The amplitudes and periods of these cycles follow

Acyc ∝ P 0.94±0.11
cyc , with Pcyc/Prot ∝ Ro−1.02±0.06 (where Ro is the Rossby number), very similar to

Pcyc/Prot ∝ Ro−0.81±0.17 that we find for 40 previously studied FGK stars, although Pcyc/Prot and

α are a factor of ∼20 smaller in the M stars. The very different Pcyc/Prot-Ro relationship seen here

compared to previous work suggests that two types of dynamo, with opposite Ro dependences, operate

in cool stars. Initially, a (likely α2 or α2Ω) dynamo operates throughout the convective zone in mid-

late M and fast rotating FGK stars, but once magnetic breaking decouples the core and convective

envelope, a tachocline αΩ dynamo begins and eventually dominates in older FGK stars. A change in

α in the tachocline dynamo generates the fundamentally different Pcyc/Prot-Ro relationship.

Keywords: M dwarf stars(982) — Stellar activity(1580) — Stellar magnetic fields(1610) — Stellar

rotation(1629)

1. INTRODUCTION

Stellar cycles are (quasi-)periodic fluctuations in the

intrinsic brightness of stars due to changing internal

magnetic fields. Such cycles are most clearly manifest vi-

sually by the appearance of starspots, however are more

easily observed by studying chromospheric (Ca ii H and

K) or coronal (X-ray) variability - both of which are

more monotonically correlated with magnetic activity.

Indeed, in the optical waveband the solar cycle has an

amplitude of the order of just 0.1%, while the coronal

(X-ray) variability varies by a factor of ∼6 (Judge et al.

2003). Sunspot observations first led to the discovery

Corresponding author: Zackery Irving
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of the 11-yr solar cycle almost 200 years ago (Schwabe

1844). Over half a century later, it was realised that

sunspots are a manifestation of solar magnetic activity

(Hale 1908, 1913), and it is now understood that this

11-yr cycle is just one-half of the 22-yr polarity reversal

cycle (Hale et al. 1919; Babcock 1959, 1961). However,

while the solar cycle has an average period of 11 years,

due to the quasi-periodic nature of stellar cycles it is not

uncommon for a given cycle to have a period between

9-13 years (see, for example, Donahue & Baliunas 1992).

Presently, stellar cycles are believed to be a result of

dynamo processes (see, for example, Parker 1955; Baliu-

nas et al. 1995; Dikpati & Charbonneau 1999; Kitchati-

nov & Rüdiger 1999). A dynamo process is a physi-

cal mechanism in which kinetic energy is converted into

magnetic energy via inductive effects of motions in an
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electrically conducting fluid, in a self-regenerating pro-

cess. The solar cycle can be well described by an αΩ

dynamo, where shearing (due to differential rotation)

transforms a poloidal field into a toroidal one (Ω effect),

and cyclonic convection (due to Coriolis and magnetic

forces) then restores the poloidal field with reversed po-

larity (α effect) (Parker 1955; Babcock 1961; Leighton

1969). Comparing our Sun’s cycle to the cycles of 4454

cool stars, Boro Saikia et al. (2018) found that the solar

dynamo cycle is not uncommon. Many of the finer de-

tails of these dynamo processes, however, remain poorly

understood - even in the case of our Sun (see, for exam-

ple, Ossendrijver 2003; Charbonneau 2010).

Differential rotation (DR) is a key component of the

solar αΩ dynamo model, with current models suggest-

ing that the Ω effect takes place in the tachocline layer

at the base of the convective envelope (e.g., Gilman &

Fox 1997; Dikpati & Charbonneau 1999). In the case of

our Sun, DR causes the equator to rotate more quickly

than the poles; this is referred to as solar-like DR. Some

theoretical work (e.g., Kitchatinov & Rüdiger 1999) and

observations (e.g., Barnes et al. 2005) suggest that DR

has little or no dependence on rotation, while other ob-

servations indicate that the two are closely tied (e.g.,

Donahue et al. 1996). Saar (2011) updated the work of

Donahue et al. (1996) and confirmed that DR appears

to scale almost linearly with rotation period, at least

for relatively slow rotators. Saar (2011) further argued

that the results of Barnes et al. (2005) were misleading

as they included close binaries, where large tidal forces

can freeze out DR and cause solid-body rotation.

For stars with very slow rotation, numerical simula-

tions (e.g., Karak et al. 2020; Käpylä 2021) suggest that

DR should be antisolar, where the poles rotate more

quickly than the equator, although the point of transi-

tion from solar to antisolar DR is still debated. Antisolar

DR in the classical αΩ dynamo model does not produce

polarity reversal, and so such stars would not be ex-

pected to have solar-like cycles. Nonetheless, there is

strong evidence that some slowly rotating stars do have

cycles (see, for example, Suárez Mascareño et al. 2016).

Whether or not DR depends on rotation rate, dynamo

processes in more rapidly rotating stars are expected to

differ fundamentally from those in the Sun, possessing

α2Ω or even α2 dynamos (e.g., Kitchatinov & Rüdiger

1999), where the dynamo actions originate from surface

shear or in the convection zone, respectively. Kitchati-

nov & Rüdiger (1999) suggested that these α2 dynamos

should not result in cyclic activity, and could explain

why Baliunas et al. (1995) found an absence of activity

cycles in rapidly rotating young stars. However, more

recent studies (e.g., Suárez Mascareño et al. 2016; Lehti-

nen et al. 2016) have shown that activity cycles are ob-

served in fast and slow rotating stars alike. In addi-

tion, it is difficult to explain the observed increase in

magnetic activity with rotation under the assumption

that DR is constant (e.g., Durney et al. 1993; Saar 2011;

Wright et al. 2011). It should be noted, however, that

DR studies can only measure surface DR, not DR in the

tachocline, and there is no guarantee that the two are

the same.

A convective envelope is another key ingredient of

the αΩ dynamo. Convective envelopes surrounding a

radiative core are a staple of cool stars earlier than

type ∼M3.5, while late M-type stars are believed to

be fully convective (Chabrier & Baraffe 1997); as such,

these stars cannot support solar-like αΩ dynamos (since

they have no tachocline). Instead, late M-type stars

are expected to support α2 dynamos, which, as already

discussed, are not expected to exhibit activity cycles.

However, there is some evidence suggesting that α2 dy-

namos may exhibit activity cycles under certain con-

ditions (e.g., Rüdiger et al. 2003; Gastine et al. 2012;

Käpylä et al. 2013). In addition to this, activity cycles

have also been observed in several stars which are be-

lieved to be fully convective (see, for example, Suárez

Mascareño et al. 2016; Wargelin et al. 2017).

Interestingly, there is evidence suggesting that stellar

activity cycle periods are (weakly) correlated with rota-

tion period (see, for example, Noyes et al. 1984; Bran-

denburg et al. 1998; Saar & Brandenburg 1999; Böhm-

Vitense 2007; Suárez Mascareño et al. 2016; Boro Saikia

et al. 2018; Wright et al. 2018) - M-type stars included.

In their two paper series, Brandenburg et al. (1998);

Saar & Brandenburg (1999) found that FGK stars typ-

ically occupy one of three branches: termed the “super-

active” (S), “active” (A), and “inactive” (I) branches,

with our Sun residing approximately between the A and

I branches. Saar & Brandenburg (1999) also found hints

of a tentative fourth, “transitional” (T), branch connect-

ing the A and S branches. Recent studies (e.g., Lehtinen

et al. 2016; Distefano et al. 2017; Boro Saikia et al. 2018)

have found further evidence for the existence of this T

branch, while raising doubts about the A branch, which

has become increasingly less clear as more cycles have

been found.

To develop our understanding of the dynamo processes

responsible for stellar activity cycles, active stars with a

wide range of physical parameters should be observed.

Active late M-type stars are of particular interest since

their cycles cannot be adequately explained by current

dynamo models. Due to how intrinsically faint M stars

are, however, they were underrepresented in earlier sur-

veys (e.g., Wilson 1978; Baliunas et al. 1995). Further-
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more, even in recent studies (e.g., Suárez Mascareño

et al. 2016; Wright et al. 2018), rapidly rotating M stars

are still poorly represented. Rapidly rotating late M

stars could be especially revealing, as their deep con-

vective zones combined with short rotation periods may

allow for unique dynamos.

Herein, we reexamine the 15 latest type stars listed in

Suárez Mascareño et al. (2016) (excluding GJ 526, dis-

cussed below), who analyzed ∼9 years of ASAS-3 (Po-

jmanski 1997, 2002) photometric monitoring data and

suggested that 13 of them, several of which are fully

convective, showed evidence for cyclic activity. We use

those same data and include new data from ASAS-SN

(Shappee et al. 2014; Kochanek et al. 2017), approxi-

mately doubling the period of monitoring; in some cases,

we also include TESS data to constrain shorter rotation

periods. Note, however, that there is some uncertainty

regarding the spectral types, and some stars may not

be fully convective. GJ 526, for example, is listed in

Suárez Mascareño et al. (2016) as M4, but M2 in SIM-

BAD and Suárez Mascareño et al. (2015). Moreover,

its V–KS color (see Section 2.6) also indicates it is ear-

lier than M4. In any case, GJ 526 is often too bright

for ASAS-SN monitoring (g=7.6). A few stars may also

be unresolved binary systems (see Section 2.3), further

complicating spectral type determinations, but roughly

a dozen of our stars are almost certainly fully convective

(see Section 2.4).

While photometric measurements are not as tightly

correlated with magnetic activity as other metrics (e.g.

chromospheric line intensities and coronal X-ray emis-

sion), and can suffer from counterbalancing effects be-

tween starspots and the surrounding faculae, they are

technologically easier to make. Furthermore, there

is evidence suggesting that in active, rapidly rotat-

ing stars, chromospheric emission can become saturated

(e.g., Vilhu 1984), while starspot (and hence photomet-

ric) variability can continue to rise with increasing rota-

tion (e.g., O’dell et al. 1995; Krishnamurthi et al. 1998).

In Section 2, we discuss the data used and the anal-

ysis performed to identify rotation periods and activity

cycles in 15 M-type stars from their photometric time

series. Results are presented in Section 3, and our inter-

pretation of these results is provided in Section 4. Our

final thoughts are then given in Section 5.

2. METHOD

2.1. Data Collection

ASAS-3 optical photometry data were downloaded

from the ASAS All Star Catalogue.1 All ASAS-3 data

use V-band filters, and individual measurements are as-

cribed one of four grades: A - best data; B - mean data;

C - A and B with not measured indication; D - worst

data. We opted to use only measurements with an A or

B grade. For most stars in our sample, the MAG 2 (four

pixel) aperture data had the least scatter, and therefore

the lowest empirical uncertainty; to be consistent, we

therefore used this aperture for all our stars. We note,

however, that the choice of aperture can sometimes have

a significant effect on the inferred cycle period, and could

explain (at least partly) why our results sometimes differ

from those of Suárez Mascareño et al. (2016).2 ASAS-

3 has a FWHM PSF of typically 23”, corresponding to

approximately 1.5 pixels.

ASAS-SN optical photometry data were collected us-

ing the light curve server.3 Early ASAS-SN data were

gathered using V-band filters, while the most recent data

use g-band. The ASAS-SN light curve server does not

perform proper motion corrections, unlike the ASAS All

Star Catalogue, so proper motion corrected coordinates

had to be specified for each query. ASAS-SN has a 16”

FWHM PSF, so we allowed for a proper motion of up to

1” either side of the input coordinates; extractions use a

two pixel (16”) aperture. We then compiled these proper

motion corrected light curves into single light curves for

each star once we had downloaded all available data.

TESS optical photometry data were downloaded using

the Lightkurve Python package (Lightkurve Collabo-

ration et al. 2018; Astropy Collaboration et al. 2018;

Brasseur et al. 2019; Ginsburg et al. 2019), which ac-

cesses publicly available data directly from the Mikulski

Archive for Space Telescopes (MAST). Only data prod-

ucts produced via their Science Processing Operations

Center Science Analysis Pipeline (Jenkins et al. 2016)

were used. For each star, we also used the pipeline aper-

ture.

2.2. Data Preparation

2.2.1. ASAS-SN

Initially, the early V-band and recent g-band data

were disjointed in the compiled ASAS-SN light curves.

We therefore needed to color correct these data. Us-

ing the empirical UBVR-uvgr relation found by Kent

(1985), and improved by Windhorst et al. (1991), we

1 http://www.astrouw.edu.pl/asas/?page=aasc
2 We further note that the aperture columns are sometimes ar-

ranged inconsistently between different stars, and so care needs
to be taken to ensure the same aperture is being used for all stars.

3 https://asas-sn.osu.edu

http://www.astrouw.edu.pl/asas/?page=aasc
https://asas-sn.osu.edu
songyongliang
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can convert from V- to g-band magnitudes using:

V = g − 0.03− 0.42(g − r), (1)

where V is the V-band magnitude, g is the g-band mag-

nitude, and g − r is the g–r color index, given by:

g − r = 1.02(B−V)− 0.22, (2)

where B−V is the B–V color index. However, M stars

are relatively cool objects, and emit mostly towards the

red end of the optical spectrum; as such, the B–V color

index is not the best diagnostic for these stars. In ad-

dition, the relation given in Equation 1 was derived us-

ing predominantly O–K stars. After color correcting

V-band data using these formulae, residual offsets were

therefore required. These offsets were computed by com-

paring the means of overlapping g- and V-band data.

Further internal cross-calibration is then required

because ASAS-SN data are collected using multiple

telescopes positioned around the world, with small

but sometimes significant differences between nominally

identical instruments. The ASAS-SN pipeline automat-

ically adjusts for these differences, but color-dependent

residuals may remain, as we found for our reddish M

stars.

To correct for differences between different ASAS-SN

telescopes, we first selected the telescope with the largest

number of measurements, thus defining our reference

data set. We then calibrated the remaining telescopes

sequentially in descending order of relative overlap. To

calibrate a telescope, we applied an offset such that the

averages of overlapping data points between the tele-

scope and the reference data set were equal. Once a

telescope had been calibrated, it then became part of

the reference data set for subsequent calibrations. For-

tunately, we did not find any instances of telescopes with

no overlapping data. However, if a particular telescope

was found to show unusual behavior within a given light

curve (relative to the other telescopes) then this tele-

scope’s data were removed. For example, telescope “bA”

showed an unusually large scatter for GJ 447, obscuring

its cyclic modulations, but appeared perfectly normal

for GJ 581, GJ 729, and GJ 849; this telescope’s mea-

surements were therefore removed in the former case,

but kept in the latter three.

2.2.2. TESS

Uncorrected TESS light curves are dominated by scat-

tered light background caused by spacecraft motions. To

reduce this background, we used Lightkurve to per-

form pixel level decorrelation (PLD), which has been

shown to be effective at removing systematic noise from

both Spitzer (Deming et al. 2015) and K2 (Luger et al.

2016, 2018) data. PLD works by creating masks of the

object of interest and the surrounding background, and

then using linear regression to model trends in the back-

ground. After subtracting this noise model from the

uncorrected light curve, systematic noise is greatly re-

duced.

2.2.3. Outlier Removal

After performing the analysis described above on

ASAS-SN and TESS data, we then removed outliers

from all our data sets. For ASAS-3 data, we clipped

each observing season to remove measurements more

than two standard deviations from the mean.

For ASAS-SN data, we initially separated the data by

telescope (and consequently, by filter). We then binned

each filter’s telescope-separated data according to the

star’s rotation period (since observing seasons were not

always well-defined when data were separated by tele-

scope). ASAS-SN typically makes between 1–3 observa-

tions of each region of the visible sky each night (3 being

the nominal number); binning ASAS-SN data into bins

of less than 2d therefore becomes volatile and unreliable

due to the small number of data points per bin. Con-

sequently, we chose to bin stars with rotation periods

of less than 24d differently, instead using bin sizes of

10Prot.
4 In all other cases, we used the rotation period.

We then clipped these data using a tolerance of two stan-

dard deviations from the mean. Next, we repeated this

process using bin sizes of Prot if Prot ≤ 24d, or Prot/12

otherwise, with a tolerance of two and a half standard

deviations from the mean (note we used a looser toler-

ance for these smaller bins).

After removing outliers from the telescope-separated

ASAS-SN data, we recalibrated these telescopes and

recorrected any residual offset between the V- and g-

band data resulting from outlier removal. We then

binned the entire calibrated light curve using bin sizes

of Prot if Prot ≤ 24d, or Prot/12 otherwise, and removed

measurements more than two and a half standard de-

viations from the mean. In total, this usually resulted

in ∼10% of the data being removed. Finally, we recali-

brated these telescopes again and recorrected any resid-

ual offset between the V- and g-band data.

Since TESS data have such high cadence, we simply

binned these data into 0.1d bins and removed outliers

using a tolerance of two and a half standard deviations

from the mean.

2.3. Binary Systems and Crowded Fields

4 For a star with Prot = 24d, this is approximately equal to an
observing season.
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When assessing our results it is important to keep in

mind that some target-star intensity extractions may

suffer from contamination by binary companions or

other stars that appear nearby in the sky. Winters

et al. (2019) list data from an all-sky volume-limited

(25pc) survey for stellar companions to 1120 M-dwarf

primaries, and serves as our principal reference regard-

ing binarity since it includes all our stars of interest ex-

cept for Proxima (GJ 551). Two systems are listed as

binaries: GJ 234 and GJ 896.

The GJ 234 pair has a semi-major axis of 1.1” (e.g.,

Gatewood et al. 2003; Kervella et al. 2019) but contam-

ination by the secondary is small, with estimated inten-

sity ratios of 100:5.3 in the B band (Gatewood et al.

2003), 100:5.9 in V (Henry et al. 1999), and 100:25 in

K (Coppenbarger et al. 1994). GJ 896 A and B had a

separation of 5.35” in 2004 (Winters et al. 2019) with an

estimated V magnitude of 10.29 for component A and

2.12 magnitudes dimmer for B (100:14 ratio). Davison

et al. (2015) measured a separation of 7” and list the

spectral types as M3.5+M4.0. These stars are mostly

blended in ASAS and ASAS-SN data, and it is difficult

to determine if the lack of an obvious cycle in GJ 896A

is intrinsic, from contamination by the secondary star,

or variable extraction efficiencies as the pair’s center of

emission moves around its center of mass and proper

motion.

The multiplicity of GJ 273 is somewhat unclear, with

Vrijmoet et al. (2022) listing it as a double based on Gaia

data, while Winters et al. (2019) conclude that the puta-

tive companion is probably an unassociated background

object. Astudillo-Defru et al. (2017) analyzed HARPS

RV data and report that GJ 273 has four planets, with-

out any mention of spectral evidence for a companion;

in our analysis, we treat this star as a single.

Although GJ 273, along with GJ 317 and GJ 406, were

not included in their study of binarity in nearby stars

using data from HIPPARCOS and Gaia DR2, Kervella

et al. (2019) calculated minimum (inclination depen-

dent) masses for companions to the rest of the stars in

our sample. Apart from the two known binary systems,

minimum masses were no larger than 0.25MJ assum-

ing 0 inclination and orbital radii of r = 1 AU, with

mass scaling as
√
r. All our stars have clear rotational

modulation, indicating that inclination cannot be too

small (assuming rotational and orbital co-planarity), so

it seems unlikely that any of the stars under study here

(apart from GJ 234 and GJ 896) have stellar mass com-

panions. Many of these stars are also the subjects of

RV studies, which would readily reveal binarity unless

the orbital inclination was very small. We particularly

mention GJ 358 because of its remarkable changing cy-

cle periods: Bonfils et al. (2013) explicitly treat this star

as a single after excluding known and discovered spec-

troscopic binaries and visual pairs from their analysis of

HARPS data.

Intensity extractions can also be affected by stars that

appear nearby on the sky even if they are not physi-

cally associated. GJ 406 has a very large proper mo-

tion (4.72”/yr) and has recently passed quite close to

two objects that may provide contaminating flux. Like-

wise, Proxima lies in a very crowded part of the sky

and is currently moving at 3.86”/yr within a group of

stars that, although dimmer, may be bright enough to

cause significant contamination within the ASAS-3 and

ASAS-SN extraction regions. Those effects should be

slowly varying but complicate interpretation of obser-

vations and may be at least partly responsible for the

general brightening seen in Proxima’s ASAS and ASAS-

SN data.

2.4. Separating Partially from Fully Convective Stars

A further consideration to make when assessing our

results is which stars are fully convective. As mentioned

in Section 1, spectral type is often used to distinguish

partially from fully convective M stars. However, spec-

tral type determinations are not always a robust metric,

and the boundary between sub-types is often blurred.

Indeed, some of these difficulties were mentioned in Sec-

tion 1, and discussed in detail in Section 2.3. Fortu-

nately, recent studies have alleviated some of the ambi-

guity in identifying fully convective M stars.

Using data from Gaia DR2, Jao et al. (2018) identi-

fied a gap in the color-magnitude diagram for the lower

main sequence, which they proposed could be used to

distinguish partially from fully convective M stars. van

Saders & Pinsonneault (2012) first predicted this gap

as the result of nonequilibrium 3He fusion prior to stars

becoming fully convective; using numerical simulations,

Feiden et al. (2021) were able to reproduce this gap.

Using this distinction, specifically in the V–KS vs. MV

plane, we identify 11 of our 15 M stars as being fully

convective (see Table 1). We note, however, that for a

few high proper motion stars not included in Gaia DR2,

we had to use DR3 parallaxes.

2.5. Time Series Analysis Techniques

Herein, we predominately use traditional time series

analysis techniques, specifically Lomb–Scargle (L–S) pe-

riodograms (Lomb 1976; Scargle 1982) for two key rea-

sons. Firstly, more advanced techniques, such as Gaus-

sian processes (GPs), come with a significant computa-

tional expense. Depending on the number of covariance

function hyperparameters, the number of mean function
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parameters, the priors, and the size of the data set it-

self, fitting a GP model can easily take several orders of

magnitude times the time it takes to obtain an L–S pe-

riodogram. Secondly, as we discuss later, the literature

shows that stellar cycles often appear to be well approx-

imated by sines. We note, however, two exceptions: GJ

358 and GJ 551 (Proxima), whose cyclic modulations

cannot adequately be described by one or two single-

period sinusoids; these stars are therefore better suited

to a GP analysis.

To compute the false alarm probabilities (FAPs) on

our detections, we use the approximation proposed by

Baluev (2008), often referred to as the Baluev estimate.

We compared this method with a more robust bootstrap

simulation method for half a dozen ASAS-3 and ASAS-

SN light curves, and found that results were usually

within 10%, and many times within 5%; the largest dif-

ference we found was FAPBaluev : FAPbootstrap ≈ 0.79.5

Due to the computational expense of bootstrap simu-

lations, without much improvement to performance, we

prefer the Baluev estimate. In our work, we consider a

FAP of ≤ 0.1% to constitute a significant detection, the

same threshold used in Suárez Mascareño et al. (2016).

In theory, typical time series analysis techniques,

such as fast Fourier transforms (FFTs) and L–S peri-

odograms, may not necessarily be the best tools for the

analysis of stellar cycles. Both are limited in that they

model signals with sinusoids; while this may be a good

model for idealized systems, it often fails in reality. In-

deed, stellar cycles need not be sinusoidal in nature, nor

strictly periodic.

To identify stellar cycles in unevenly sampled light

curves, Olspert et al. (2018b) introduced a Bayesian

generalized Lomb–Scargle periodogram with trend

(BGLST); using synthetic quasi-periodic data, they

showed that their BGLST performed better than the

standard L–S periodogram. Moreover, in their follow-up

paper, Olspert et al. (2018a) further showed that GPs

can be used effectively in the analysis of stellar cycles -

in their case using Ca ii H and K data.

The greatest benefit of GPs over traditional time se-

ries analysis techniques, such as the L–S periodogram, is

their flexibility. Much like L–S periodograms, GPs can

be used with unevenly sampled data. However, GPs

need not assume the data contain a periodic, sinusoidal

signal. The assumptions of a GP are encoded in its mean

and covariance functions, which, in theory, allow for any

number of arbitrary assumptions to be made.

5 Note, however, this result was obtained for GJ 285’s ASAS-SN
light curve, where the peak in the periodogram was an order of
magnitude above either method’s 0.1% FAP power threshold.

Olspert et al. (2018a), in their study of stellar cy-

cles, compared the performance of a Bayesian harmonic

(i.e. sinusoidal) regression model, and GP models with

periodic and quasi-periodic covariance functions. They

found that where traditional methods suggest double cy-

cles cycles, their quasi-periodic GP model often found

only a single cycle; as the assumption of a quasi-periodic

signal has more physical justifications, Olspert et al.

(2018a) concluded that double cycles are rarer than ini-

tial results (e.g., Wilson 1978; Baliunas et al. 1995; Bran-

denburg et al. 1998; Saar & Brandenburg 1999) suggest.

However, while a quasi-periodic model is more phys-

ically justified, its results are often not much of an im-

provement over a simple harmonic model. Olspert et al.

(2018a) identified harmonic signals in the light curves in

36 of stars; of these 36 stars, quasi-periodic signals were

also identified in 26. Comparing these 26 quasi-periodic

periods with their harmonic equivalents, 22 were com-

fortably within 3σ. This suggests that while stellar cy-

cles need not be strictly periodic, nor sinusoidal, they

can often be well approximated by sines.

2.6. Determining Periods

2.6.1. Rotation Periods from Photometric Time Series

To determine rotation periods we used L–S peri-

odograms, as well as data from both ASAS-SN and

TESS. ASAS-3 data are noisier and lower cadence than

ASAS-SN data, and therefore provide no additional ben-

efit for rotational studies; for these reasons, ASAS-3

data are not included. The first step in our analysis was

to separate the ASAS-SN data by observing season. We

then computed L–S periodograms for each of these sea-

sons, and, provided the period of the peak was greater

than 15d, used the tallest peak in each season’s L–S

periodogram to fit a sine model using the Levenberg–

Marquardt (L–M) algorithm (a sophisticated non-linear

least-squares fitting algorithm, see Moré 1978) - as

shown in Figure 1 for GJ 54.1. Note that there were

often no significant peaks at Prot/2.

We discarded periodograms computed from seasons

with low data density, or incomplete seasons,6 and iden-

tified significant peaks in each periodogram. After disre-

garding anomalous peaks, like the broad peak at approx-

imately 180d in the third row of Figure 1, we inferred

the rotation period by computing the mean period of

the remaining peaks, and estimated the uncertainty as

the standard deviation on this mean.

However, if the rotation period of a star was suffi-

ciently small (below 15d), we used the higher cadence

6 In some cases, incomplete seasons were included if multiple rota-
tions were clearly shown.
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Figure 1. L–S periodograms (left) computed from ASAS-
SN observing seasons (right) on GJ 54.1. Dashed red lines
(left) show the power thresholds for FAPs of 0.1%. Dashed
black lines (right) show optimized sine fits using the period
of the tallest peak in the corresponding periodogram.

but shorter duration TESS data (TESS observation win-

dows typically span ∼27d) to better constrain this pe-

riod. If a star had multiple TESS observations, we found

that in every case the inferred periods were identical to

within the (tightly constrained) uncertainties.

Our analysis using TESS data proceeded in much the

same way as our analysis using ASAS-SN data; an ex-

ample is shown in Figure 2 for GJ 234. Due to our cur-

rently limited understanding of TESS systematics, how-

ever, the identification of rotation periods is restricted

to below approximately half a TESS observing window

(hence our 15d cutoff) - see, for example, Anthony et al.

(2022); Claytor et al. (2022).

10 1 100 101
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Figure 2. L–S periodogram (top) computed from the 2020
TESS observation of GJ 234 (bottom). The dashed red line
(top) shows the power threshold for a FAP of 0.1%; dashed
black line (bottom) shows the optimized sine fit using the
period of the tallest peak in the periodogram.

To infer the rotation period of a star from its TESS

light curve, we fit a Gaussian to the tallest peak in its

periodogram. Our estimate for the rotation period was

thus the mean of this Gaussian, with the uncertainty

given by its standard deviation. Since we were often lim-

ited to one or two TESS observations, following the same

procedure as described above for ASAS-SN resulted in

unrealistically small errors in some cases, and no errors

in others; we therefore adopted this alternative method.

We note that when we tested this approach on ASAS-

SN data, it resulted in larger uncertainties due to the

broad peaks in these periodograms. However, TESS ob-

servations only span ∼27d, and so these broadening ef-

fects (e.g., resulting from differential rotation and mul-

tiple star spot generations) are minimal. TESS is also a

space-based observatory, with a much higher signal-to-

noise ratio than ASAS-SN. Given these differences, we

deem this alternative method to be appropriate. Results

are presented in Table 1 and discussed in Section 3.

2.6.2. Cycle Periods from Photometric Time Series

To determine cycle periods we typically use L–S pe-

riodograms incorporating data from both ASAS-3 and

ASAS-SN; exceptions to this are Proxima (for which we

also have ASAS-4 data and use GPs), and GJ 358 (for

which we also use GPs) - see Section 2.5 for more details.

For each star, we computed a L–S periodogram from

its light curve. We then identified significant peaks in

those periodograms with periods of more than 1.5 years,

and used the periods of those peaks to fit sine functions

to the light curve; see Figures 3 and 4 for examples. All

ASAS-3/-4 light curves and associated periodograms (16
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Figure 3. L–S periodogram (top) computed from ASAS-3
data on GJ 628 (bottom). The FAP = 0.1% power threshold
is shown by the dashed red line, while the dashed blue line
shows the time-span of the data. The blue markers show
the mean values (dates and magnitudes) for each observing
season. The period of the labeled peak in the periodogram
was used to create the sine fit in the bottom plot. The com-
plete figure set (16 images) is available in the online journal
(Figure Set 1).

images) are provided in Figure Set 1; likewise for ASAS-

SN (15 images) in Figure Set 2.

Fig. Set 1. ASAS-3/-4

If a periodogram contained multiple significant peaks,

we fit sine functions using each peak and then combined

these functions to create a superposition. If the fit of

the superposition was worse than the fit of any single

component, then the worst fitting components were re-

moved until the fit of the superposition was better than

the fit of any single component, or only the best fit-

ting component was remaining. If the period(s) of the

remaining component(s) was within the period of obser-

vation, then we deem this cycle to be “well-defined” -

and poorly constrained otherwise.

Fig. Set 2. ASAS-SN

3. RESULTS

Rotation and cycle periods are presented in Table 1.

All results from this work have FAPs ≤ 0.1%.

3.1. Rotation Periods

Using the analysis procedures described in Section

2.6.1, high-confidence rotation periods were determined

for all but two of our stars. For one exception, GJ 729,

Prot is less than 15d but TESS data were not available

for our work. We therefore used the same method as for

stars with longer rotation periods, computing the mean

and standard deviation of similar significant peaks in

10 2 10 1 100 101
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Figure 4. Periodogram and ASAS-SN data for LP 816-60.
The complete figure set (15 images) is available in the online
journal (Figure Set 2).

each ASAS-SN observing season’s periodogram; these

periodograms are shown in Figure 5. This resulted in a

rotation period of 2.9± 0.1d, in agreement with Suárez

Mascareño et al. (2016); Ibañez Bustos et al. (2020), who

found a rotation periods of 2.9 ± 0.1d (from photomet-

ric monitoring) and 2.848±0.001d (from chromospheric

indicators), respectively.

For the second exception, GJ 273, we could not deter-

mine a rotation period from our data sources. Breaking

ASAS-SN data down by observing season, as described

in Section 2.6.1, and shown in Figure 6, produced only

one significant peak at ∼42d. However, no other observ-

ing seasons showed any significant peaks at all. Comput-

ing periodograms from the entire ASAS-SN light curve,

as shown in Figure 7, also produced no significant peaks

with a period of less than one year. Figures 6 and 7

show that this star has fewer ASAS-SN observations
than many of the other stars in our sample, especially in

the early seasons (which use V-band filters). The spar-

sity of these observations undoubtedly contributed to

our inability to identify rotational modulations within

this light curve. For these reasons, we adopted the Prot

of 115.9 ± 19.4d measured by Suárez Mascareño et al.

(2015) using HARPS Ca ii H and K and Hα data.

Given analysis uncertainties and the inherent varia-

tion in rotational measurements caused by starspot evo-

lution, migration in latitude and longitude, and differen-

tial rotation, our results are generally in good agreement

with previous measurements. Where there are signif-

icant disagreements (GJ 234, GJ 628, and LP 816-60)

we believe our measurements are more trustworthy given

the higher quality and cadence of TESS and ASAS-SN

data compared to the ASAS-3 data used by Suárez Mas-
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Figure 5. L–S periodograms (left) computed from ASAS-
SN observing seasons (right) on GJ 729. Due to the short
inferred rotation periods, no sine fits are shown as the mod-
ulations would be unresolvable.

careño et al. (2016). Note that two of our stars, GJ 317

and GJ 406, have Prot values reported for the first time.

3.2. Cycle Periods

L–S analysis yields FAPs of less than 0.1% using

ASAS-3/-4 and/or ASAS-SN data for 12 stars, not in-

cluding a few cases where the significant peak corre-

sponds to a cycle period exceeding the period of obser-

vation. Below, we comment on three stars of particular

note. For stars not mentioned below, light curves and

associated L–S periodograms are provided in Figure Sets

1 (ASAS-3/-4) and 2 (ASAS-SN).

3.2.1. LP 816-60
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Figure 6. L–S periodograms (left) computed from ASAS-
SN observing seasons (right) on GJ 273.

Figure 4 provides strong evidence for at least one ac-

tivity cycle in LP 816-60. From this figure, it is clear

that there are two strong periodic signals in LP 816-60’s

ASAS-SN light curve, with periods of 2.0- and 4.2-yr.

Upon first inspection, one of these peaks could be inter-

preted as a harmonic of the other. Indeed, 4.2 is very

close to double 2.0, and taking into account the uncer-

tainties on these periods, one could well be a harmonic

of the other.

Evidence presented by do Nascimento et al. (in prepa-

ration) suggests that it is not uncommon to measure

cycles with Pcyc and Pcyc/2. In that paper, they in-

terpret such results as the separate Hale (magnetic po-

larity) and Schwabe (activity, starspots) cycles having

different amplitudes due to (for reasons which are cur-

rently unclear) one polarity being stronger. Given the
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Figure 7. Periodogram and ASAS-SN data for GJ 273.

two clear cycles visible in LP 816-60’s ASAS-SN data,

this star may therefore provide evidence for M dwarfs

also possessing (or, at least, appearing to have) asym-

metric polarity strengths. Another possibility is that

both peaks are the result of a single quasi-periodic cy-

cle, as discussed in Olspert et al. (2018a).

Alternatively, since these cycles have been inferred us-

ing optical photometry data, they could be the result of

an observing effect. Assuming a 4.2-yr cycle period, it

could be the case that for one half of this cycle, starspots

are preferentially generated out of our line of sight (i.e.,

sin(i) � 1) - although the clear rotational modulations

make this less likely. Without Zeeman-Doppler imag-

ing (ZDI) (e.g., Hébrard et al. 2016), or X-ray observa-

tions (e.g., Wargelin et al. 2017), however, it is difficult

to determine whether an observed cycle is a result of

magnetic activity (specifically a Schwabe cycle) or some

other phenomenon.

3.2.2. GJ 358

GJ 358’s ASAS-SN light curve (Figure 8) shows that

the cyclic modulations appear to be reasonably well de-

scribed by two sinusoidal functions, following the Pcyc

and Pcyc/2 rule suggested by do Nascimento et al.

(in preparation). Interestingly, both the ASAS-3 and

ASAS-SN light curves (Figures 9 and 8) show long-term

“linear” trends whose gradients are of opposite sign;

this may suggest that GJ 358 exhibits a longer-term,

Gleissberg-esque cycle, although many more years of

data will be needed to confirm this.

Further study of the lightcurves from ASAS-3 and

ASAS-SN, both of which are shown in a single plot in

Figure 10, reveals that GJ 358’s cycle period has been

steadily decreasing for at least the past 20 years. ASAS-

3 data show cyclic modulations with periods greater
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Figure 8. Periodogram and ASAS-SN data for GJ 358.
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Figure 9. Periodogram and ASAS-3 data for GJ 358.

than four years, while the most recent modulation seen

in ASAS-SN data has a period of just 1.5 years. This

star therefore appears to be quite unusual. Unfortu-

nately, there is a ∼6-yr gap between ASAS-3 and ASAS-

SN data on this object. This gap could be filled with

ASAS-4 data, however these data are not publicly avail-

able. Analysis of these data would prove very interesting

and reveal, for example, whether the cycle period has

changed monotonically, and when and how the longer-

term trends seen in ASAS-3 and ASAS-SN data inter-

sected.

At present, it is also unclear whether GJ 358’s cycle is

approaching some kind of (quasi-)steady-state, or if this

cycle period will reach a local minimum before increas-

ing again. It is also unclear if this changing period is

related to the long-term cycle suggested by the “linear”

trends seen in GJ 358’s ASAS-3 and ASAS-SN data.

Future observations on this object are therefore needed
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Figure 10. GP fits (dashed black line) to ASAS-3 and
ASAS-SN data (blue and red markers, respectively) on GJ
358. ASAS-3 data were color corrected using Equation 1,
and then further offset, to align vertically with ASAS-SN
data. Local minima in these GP fits are marked by vertical
dashed lines and the periods between successive minima are
labeled.

to better understand this seemingly exceptional cyclic

activity.

3.2.3. GJ 551

GJ 551 (Proxima Centauri) is an interesting case for

several reasons. It is the most well-studied example of a

fully convective M star exhibiting cyclic activity, and is

the only fully convective star (in fact, the only M star)

to have undergone long-term X-ray monitoring. Suárez

Mascareño et al. (2016) found a 7-yr cycle in ASAS-3

data, and Wargelin et al. (2017) included an additional

∼5 years of ASAS-4 data, plus UV and X-ray observa-
tions to further support that conclusion.

More recent optical monitoring data, however, are

less clear, as reflected in the ASAS-SN results listed

in Table 1, and shown in Figure 11, which includes

ASAS-4 data extending into 2019 that were presented

in Damasso et al. (2020). ASAS-3 and ASAS-4 data

were cross calibrated (private communication, G. Po-

jmański), and then calibrated versus ASAS-SN data fol-

lowing the “overlapping data” procedures described in

Section 2.2.1. As seen in Figure 11, periodic behavior

is quite apparent at the beginning, but steadily weakens

while average brightness increases. We suspect that the

increasing stellar contamination noted in Section 2.3 is

significantly affecting the data, but attempting to model

and correct the contamination is beyond the scope of

this paper. In contrast, X-ray data from Swift, now

spanning more than 12 years (with some gaps), indicate
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Figure 11. GP fit (dashed black line) to Proxima’s ASAS-3,
ASAS-4, and ASAS-SN data.

well behaved cyclic behavior, currently with a period of

∼9 years (Wargelin, et al., in preparation).

3.3. Periodicities and Magnetic Cycles

It should be noted that some of the cycles presented

in Table 1 may not be related to a star’s global mag-

netic field, but could be the result of other physical phe-

nomena (or, if they are, may not be Schwabe cycles;

do Nascimento et al. in preparation). For example,

Rossby waves (horizontally flowing eddies in the con-

vective zone/photosphere), as seen in the Sun, can act

as dynamos (e.g., Gilman 1969), leading to perceived

cyclic activity which is not necessarily related to the

star’s global magnetic field.

In the case of our Sun, there is also the Rieger cycle

(Rieger et al. 1984), where hard solar flares are observed

to occur in groups with a mean spacing of ∼154d. Sim-

ilar cycles surely exist in other stars; while flares are a

result of magnetic activity, they are local effects and it

is not well understood how they relate to a star’s global

magnetic field - even in the case of our Sun (e.g., Toriumi

& Park 2022).

3.4. Phase Matching

One way to assess the validity of a star’s apparent cy-

cles is to see if they are consistent through ASAS-3 and

ASAS-SN data. If the best fitting cyclic models from

both data sets show a reasonable level of agreement (in

terms of both phase and amplitude) where they over-

lap, then these cycles are more likely to be real. Note,

however, that this method assumes a roughly constant

cycle period, which, as discussed in Section 1, may not

always be the case.

To investigate the amplitude and phase match-ups,

we extend the cycles identified in Table 1 such that
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Figure 12. Plots of the cyclic models found from ASAS-
3 (blue line) and ASAS-SN (red line) data for GJ 273, GJ
234, and GJ 447 from Table 1, showing good, fair, and poor
agreement, respectively. The complete figure set (10 images)
is available in the online journal (Figure Set 3).

the ASAS-3 and ASAS-SN cyclic models for each star

overlap by one year. In addition to this, we also offset

the ASAS-3 data such that the mean magnitude of this

light curve is the same as the mean magnitude of the

ASAS-SN light curve, thus allowing easy comparison of

the models’ phases and amplitudes. Example plots are

shown in Figure 12, showing the results for GJ 273, GJ

234, and GJ 447. All phase match plots (10 images) are

provided in Figure Set 3. Note, however, that we place

little emphasis on these plots; indeed, they are primarily

included so that the inferred cycles from both data sets

can be more easily compared.

Fig. Set 3. Phase Check

As can be seen in the top panel of Figure 12, both the

ASAS-3 and ASAS-SN cyclic models on GJ 273 agree

very well, in terms of both phase and amplitude, where

they overlap. We interpret this as enhanced evidence

for these cycles being real. On the other hand, GJ 234

(middle panel of Figure 12) shows good amplitude agree-

ment, but poorer phase agreement, while GJ 447 (bot-

tom panel of Figure 12) shows poor agreement in both

cases. In the final column of Table 1, we assign each

star’s ASAS-3 and ASAS-SN cycles a subjective “phase

match” grade of either good, fair, or poor. For reference,

we judge that GJ 273, GJ 234, GJ 447 show good, fair,

and poor phase agreement, respectively. The remaining

plots are provided in Figure Set 3.

4. DISCUSSION

With rotation and cycle parameters in hand, we can

investigate correlations among various physical quanti-

ties. First, however, we must determine a largely the-

oretical quantity for each star: its convective turnover

time, τ .

4.1. Determining Convective Turnover Times and

Rossby Numbers

The convective turnover time is a measure of how long

it takes for convection to move material from the bot-

tom of the convective zone to the top, or vice versa, and

is related to the ratio of the thickness of the convective

envelope (thin in F stars, fully convective by ∼M3.5)

and the mean convective velocity (which increases with

temperature). To compare stars with different sized con-

vective zones, temperatures, and rotation periods, a di-

mensionless quantity known as the Rossby number, Ro,

is commonly used. Another dimensionless quantity is

the linear αΩ dynamo number, D, a measure of the dy-

namo’s strength, which is proportional to Ro−2. The

Rossby number of a star is defined as:

Ro =
Prot

τ
, (3)

where Prot is the rotation period and τ is the convective

turnover time. Note, however, that there are two defi-

nitions for the convective turnover time: a local and a

global definition. The local convective turnover time,

τL, applies to the bottom of the convective zone (in

the tachocline, where the main dynamo amplification

takes place in some models), while the global convective

turnover time, τG, is an average over the entire convec-

tive zone. The global convective turnover time is there-

fore a better quantity for M stars, where the tachocline

is negligible or absent.

The choice of a convective turnover time is impor-

tant. We need both a local (for tachocline-based dy-
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namos) and a global (for full convection zone dynamos)

τ , which we denote τL and τG, respectively. Since we

are interested in the operation of dynamos, a “τ” de-

rived from any indirect activity diagnostic (e.g., Ca ii

HK or X-ray emission) is of dubious utility. This is be-

cause such empirical τs implicitly assume that the func-

tion f(M, log g, [Fe/H]) which best connects the given

emission to rotation can be defined to be “τ ,” ignor-

ing the complex physics connecting magnetic flux to the

heating which produces the emission in question (e.g.,

Cuntz et al. 1999). The hidden inclusion of this ad-

ditional heating physics makes these empirical “τs” in-

appropriate for understanding how dynamos themselves

operate. Note that a τ derived by best fitting rota-

tion with unsigned magnetic flux measurements would

be more appropriate. This has not yet been attempted

to our knowledge, likely because data on unsigned fluxes

are sparse and generally come with large errors (e.g.,

Reiners 2012; Saar et al. 1994). Calculating such a τ is

outside the scope of the current work; however new flux

measurement methods may make it feasible in the near

future (e.g., Lehmann et al. 2015; Mortier 2016).

Unfortunately, theoretically based τs are also prob-

lematic. Due to uncertainties concerning M dwarf inter-

nal structure near the fully convective limit (Baraffe &

Chabrier 2018; Jao et al. 2022), any purely theoretical τ

is at best approximate at low masses (Jao et al. 2022).

There are also problems defining a local τ in the cen-

ter of fully convective stars. Indeed, with no convection

zone bottom, the tachocline concept driving the need

for a local τ requires modification itself. Fortunately,

a recent paper has worked to improve τ models in low

mass stars (Landin et al. 2023). We adopt their values

here at age ≈1Gyr. This is post-ZAMS for all masses

here except 0.1 M�, but we note from their Figure 1 that

τG(0.1M�) evolves negligibly for ages >0.3 Gyr. Indeed,

over the mass range considered here, τ varies little along

the main sequence except at the highest masses, where

differences of ∼30% may accrue at age extremes. We use

the V–KS vs. Teff relation of Pecaut & Mamajek (2013)

(and later improvements; Mamajek, E.E. 2021, private

communication) to match to our stars. As a cross-check,

we compare the calculations at low mass with a different

kind of empirical τ calculation based purely on stellar

properties - derived equating the star’s output bolomet-

ric flux with convective flux (Corsaro et al. 2021). They

find τG ∝ R[M/(LR)]1/3 ∝ M1/3T
−4/3
eff for fully con-

vective stars, where M,L, and R are the stellar mass,

luminosity and radius, respectively (taken from Pecaut

& Mamajek 2013). We find a scaled version of these

physically-based empirical τG for the most part compare

well with the new τG of Landin et al. (2023) (Figure 13;
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Figure 13. Convective turnover time (in days) vs. V–KS

color index from Landin et al. (2023). The dashed red line
shows the global turnover time (τG); the solid green line
shows the local turnover time (τL); the dotted blue line shows
the scaled version of an independent τG calculation for fully
convective stars Corsaro et al. (2021) which is in good agree-
ment except in the narrow zone 3250 K ≤ Teff ≤ 3400 K. We
adopt τ(Landin) everywhere except for τG for Teff < 3400K
(V–KS ≈ 4.6), where we transition to the scaled τG(Corsaro);
see text for details. τ(Landin) have been truncated (using
linear interpolation) at V–KS = 8; see Table 1.

where we also display their τL). The exception is in the

narrow temperature range 3250K < Teff < 3400K, very

near the fully convective boundary, where τG(Landin)

shows a spike that τG(Corsaro) does not. (We also note

that Teff(0.1M�) is cooler in Landin et al. (2023).) We

suggest that τG calculations near the stellar center may

still have problems (Jao et al. 2022), and in keeping with

the idea that τL and τG should roughly scale with each

other (e.g., Montesinos et al. 2001), we adopt the Cor-

saro values for Teff ≤ 3400 K. We use τG for fully con-

vective stars, and either τG or τL otherwise, depending

on the circumstances.

With estimated convective turnover times and Rossby

numbers for our 15 M-type stars, we then used results

from Saar & Brandenburg (1999), Lehtinen et al. (2016),

and Olspert et al. (2018a) to gather a comparison sample

of 40 F, G, and K type stars with robust, well-defined cy-

cles. Of these 40 stars, listed in Table 2, 10 have double

cycles. Note, however, Olspert et al. (2018a) use multi-

ple different methods to identify stellar cycles; for con-

sistency with our approach, we use results obtained via

their harmonic model (see Section 2.5 for more details).

To estimate the convective turnover times of these stars,
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we use the method described above.7 We note, however,

that we exclude HD 18256 (F6) as it is too hot for our τ

estimations; interestingly, in their study of Ca ii H and

K cycles in 15 stars, Baliunas et al. (2004) found that

this star had by the far the largest “anharmonicity,” a

measure of deviation from single-period sinusoidal be-

havior, in their sample.

4.1.1. Data Selection

When gathering our sample of FGK stars from other

works, we only included cycles in known (or likely)

dwarfs. Comparing the results of Saar & Brandenburg

(1999) with Olspert et al. (2018a), there are 17 stars in

common. Since Olspert et al. (2018a) had longer time

series for their analysis, we favor their results in most

cases. We note, however, an exception below.

Saar & Brandenburg (1999) found a single 2.52-yr cy-

cle in HD 76151, while Olspert et al. (2018a) found 5.0-

yr and 15.9-yr cycles using their harmonic model. We

interpret this 5.0-yr cycle as a Hale cycle (born of a

polarity asymmetry in HD 76151’s magnetic field; do

Nascimento et al. in preparation). For this reason, we

reject this 5.0-yr cycle. We also note that this 5.0-yr cy-

cle resides between the I and A branches when plotted

in Pcyc/Prot–Ro−1 space, which we interpret as stronger

evidence for this not being a Schwabe cycle (see Section

4.7).

4.2. Acyc versus Pcyc

Figure 14 shows a plot of cycle amplitude against pe-

riod for the well-defined cycles in Table 1, along with a

least-squares fit following Acyc ∝ P 0.94±0.11
cyc . When fit-

ting this power law, only stars with a single, well-defined

cycle per data set were used (i.e., if a star had a single

cycle in both ASAS-3 and ASAS-SN data, then both cy-
cles were used). Proxima’s suspect 5.1-yr ASAS-4 cycle

was ignored during fitting (see Section 2.3).

As can be seen in Figure 14, cycles with longer peri-

ods generally also have larger amplitudes (ignoring stars

with more than one concurrent cycle, whose cycles are

connected with dotted lines and shown with faded mark-

ers). We speculate that this may be caused by longer

periods allowing more build up of magnetic energy, re-

sulting in a more pronounced cycle; this process is in-

terrupted in stars with more than one concurrent cycle,

which is why they appear to contradict this trend. This

relation may also explain why short period cycles are

detected less frequently in ASAS-3 data, which are nois-

7 Note: while we do not include a plot of τL vs. B–V, the stars
from Table 2 correspond to roughly the range 1 ≤ V–KS ≤ 3.5
in Figure 13.
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Figure 14. Cycle amplitude (in millimagnitudes) against
cycle period (in years) using the well-defined cycles from Ta-
ble 1. Color-only markers show cycles inferred from ASAS
data; markers with dark outlines are from ASAS-SN data;
fully convective stars use circle markers; partially convective
stars use triangle markers; faded markers denote that these
points were ignored during fitting; concurrent cycles within
the same star are connected with dotted lines. The outlier
points for GJ 358 and GJ 447 (with colored labels) are dis-
cussed in the text.

ier than their ASAS-SN successor. It may be the case

that short period cycles are present in ASAS-3 data, but

cannot easily be resolved as their amplitudes are com-

parable to the ASAS-3 noise level.

Since stars with more than one well-defined cycle per

data set were excluded from the power law fit shown in

Figure 14, it is interesting to note where these excluded

cycles reside in relation to this fit. Indeed, it can be seen

that for stars with two concurrent cycles, one is usu-

ally closer to this power law than the other; these other

cycles may therefore be “false cycles” (Section 3.3) or

hints of a multi-branched relationship as seen by some in

the Pcyc–Prot relation (e.g., Saar & Brandenburg 1999;

Böhm-Vitense 2007; Lehtinen et al. 2016). It should

also be noted that Acyc can be quite variable (more so

in the Sun than Pcyc), and so some outliers may be ex-

pected. That said, the (somewhat tentative) agreement

among these excluded cycles is interesting, and we in-

terpret this as further evidence for this relation between

cycle amplitude and period.

Multiple branches in the Acyc–Pcyc relation may ex-

plain why, for example, the ASAS-3 cycle of GJ 358 and

ASAS-SN cycle of GJ 447 are outliers from the power

law shown in Figure 14. As discussed in Section 3.2.2,

however, GJ 358 already appears to be a highly unusual

star. GJ 447, on the other hand, does have a second

cycle period in Table 1, although it is not well con-
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Table 2. Activity Cycles For FGK Type Stars Taken From Previous Works.

Star Spectral B-V Prot Pcyc Ref. Star Spectral B-V Prot Pcyc Ref.

Type (d) (yr) Type (d) (yr)

HD 1835 G2.5 0.66 7.78 9.1 1 HD 18256 F6 0.45 3 6.8 1

HD 20630 G5 0.68 9.24 5.6 1 HD 76151 G2 0.67 15 2.52 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · 14.4 15.9 3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5.09a 3

HD 82443 G9 0.77 5.38 3.89 1 HD 115404 K2 0.94 18.47 12.4 1

· · · · · · · · · · · · 20 2 · · · · · · · · · · · · · · · · · ·
HD 149661 K1 0.84 21.07 16.2 1 HD 165341 K0 0.86 19.9 15.5 1

· · · · · · · · · · · · 4 · · · · · · · · · · · · · · · 5.1 · · ·
HD 100180 F9.5 0.57 14 3.6 1 HD 190406 G0 0.61 13.94 2.6 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16.9 · · ·
HD 1405 K2 0.95 1.756 8 2 HD 70573 G1/2 0.62 3.314 6.9 2

HD 82558 K1 0.93 1.604 14.5 2 HD 116956 G9 0.80 7.86 14.7 2

· · · · · · · · · · · · 18 · · · · · · · · · · · · · · · · · · · · ·
HD 135599 K0 0.83 5.529 14.6 2 HD 171488 G2 0.62 1.345 9.5 2

Sun G2 0.631 26.09 10.89 3 HD 103095 K1 0.75 34.3 7.13 3

HD 10476 K1 0.84 35.6 10.6 3 HD 10780 K0 0.81 22.14 7.53 3

HD 114710 F9.5 0.59 11.99 16.56 3 HD 146233 G2 0.65 22.62 11.2 3

HD 152391 G8.5 0.76 10.62 9.03 3 HD 155886 K2 0.85 20.58 10.44 3

· · · · · · · · · · · · 13.73 · · · · · · · · · · · · · · · 5.0 · · ·
HD 156026 K5 1.16 16.69 17.89 3 HD 160346 K3 0.971 32.0 7.21 3

HD 16160 K3 0.98 48.58 12.45 3 HD 165341A K0 0.86 19.33 5.19 3

HD 166620 K2 0.87 42.1 16.16 3 HD 185144 K0 0.87 27.7 6.66 3

HD 201091 K5 1.18 35.54 7.16 3 HD 201092 K7 1.37 34.55 11.65 3

· · · · · · · · · · · · 21.09 · · · · · · · · · · · · · · · · · · · · ·
HD 219834B K2 0.91 34.78 9.32 3 HD 26965 K0 0.82 38.65 10.66 3

HD 32147 K3 1.06 33.7 11.13 3 HD 3651 K0.5 0.83 37.0 16.98 3

HD 37394 K1 0.84 11.49 5.83 3 HD 4628 K2.5 0.90 37.14 8.56 3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5.79 · · ·
HD 78366 G0 0.60 9.519 14.63 3 HD 81809 G1.5 0.80 41.66 8.11 3

Note—a excluded from plots (see Section 4.1.1). References: 1) Saar & Brandenburg (1999), 2) Lehtinen et al. (2016), 3)
Olspert et al. (2018a).

strained. This second cycle has an estimated period of

10.6±6.9yr, and estimated amplitude of 21.5±1.0mmag,

which would put it very close to the power law shown

in Figure 14, although with a large period uncertainty.

Using chromospheric Ca ii H and K data on FGK

stars, Saar & Brandenburg (2002) found stronger ev-

idence for multiple branches in the Acyc–Pcyc relation

owing to their larger sample of stars. However, as the

amplitudes from Saar & Brandenburg (2002) are from

chromospheric indicators, they are not directly compa-

rable to our photometric amplitudes. It would be very

interesting to see how the photometric cycle amplitudes

of F–M type stars compare, however this is left to future

work.

In the case of our Sun, the solar cycle does not have

a strict 11-yr periodicity; indeed, the ∼4 year range of

the solar Pcyc (Donahue & Baliunas 1992) is fully ±18%

of the average value. Moreover, if a given solar cycle

has a shorter than average period, then it will usually

have a larger than average amplitude, and vice versa

(related to the Waldmeier effect; Waldmeier 1935). For

the M-type stars analyzed in this work, the observa-

tion intervals cover only a handful of cycles in the best

case, so it is difficult to determine if these cycles reflect

a natural range of Pcyc as seen in the Sun. However,

from Figure 14, it is clear that for M-type stars which

exhibit two apparent cycles, the shorter cycle usually

has a greater amplitude; in cases where the shorter Pcyc

is approximately half the longer Pcyc, this is consistent
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with one polarity being stronger than the other (i.e., a

Hale, rather than Schawbe, cycle as do Nascimento et

al. in preparation, suggest). Alternatively, if as Olspert

et al. (2018a) suggest, these double cycles are the result

of a single, quasi-periodic cycle, then perhaps this sug-

gests that M dwarfs behave similarly to the Sun - with

shorter than average cycles having greater than average

amplitudes, and vice versa.

4.3. Pcyc versus Prot and Ro

Plotting cycle period against rotation period for the

well-defined cycles in Table 1, along with previously de-

tected cycles in FGK stars presented in Table 2, shows

high scatter, with no strong correlations. However, con-

vective zones are believed to be a key ingredient of stellar

cycles, and these are not accounted for in this plot. We

therefore place little emphasis on this plot (and choose

to not include it here) as it ignores a major physical pa-

rameter of current stellar cycle models: Rossby number.

Figure 15 plots cycle period against Rossby number

for the well-defined cycles presented in Table 1, along

with the previously detected cycles in FGK stars pre-

sented in Table 2. This figure shows that when the con-

vective turnover time is accounted for, in the form of the

Rossby number, M-type stars appear to have similar cy-

cles to those of FGK stars at equivalent Ro. However,

it is clear that our M dwarfs favor shorter cycle periods,

extending the lower cluster of FGK stars to lower Pcyc.

M dwarfs also isolate themselves at low Rossby num-

bers, though this may be a sampling effect; perhaps M

dwarfs extend the upper cluster of FGK stars to lower

Ro too.

In Figure 15, the longer cycle periods seen in FGK

stars likely reflect the fact that these stars have generally

been monitored over longer periods than M dwarfs. The
evidence for M dwarfs exhibiting shorter Pcyc (relative

to FGK stars) is strong, but we also found indications

of longer, presently unresolvable or poorly constrained

cycles in 11 of our M dwarfs. Reproducing these figures

with another 10 years of ASAS-SN data may therefore

prove interesting.

4.4. Pcyc/Prot versus Ro-1

Figure 16 shows a plot of cycle period divided by rota-

tion period against inverse Rossby number for the well-

defined cycles presented in Table 1, along with previ-

ously detected cycles in FGK stars presented in Table

2.

The power law fit to the M-dwarf data in Figure 16

shows that these data follow the relation:

Pcyc

Prot
= (3.6± 1.2)× Ro−1.02±0.06. (4)

10 2 10 1 100

Ro = Prot/

101

P c
yc

 (y
r)

F stars
G stars
K stars
M stars (ASAS-3/-4)
M stars (ASAS-SN)

Figure 15. Plot of cycle period (in years) against Rossby
number, including FGK type stars from Table 2. For the
M dwarfs analyzed in this work, filled markers represent cy-
cles inferred from ASAS-SN data; empty markers are from
ASAS-3/-4 data; fully convective M stars use circle markers;
partially convective M stars use triangle markers. Multiple
cycles within the same star (and, for our M dwarfs, found
within the same data set) are connected by dotted lines.
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Figure 16. Plot of Pcyc/Prot against inverse Rossby number,
including FGK type stars from Table 2. The dashed grey
fits show the A and I branches from Saar & Brandenburg
(1999) (which have been re-fit using our updated sample),
while the black power law fits were found in this work. The
global convective turnover time was used to compute Ro for
all cycles in this figure. For the FGK stars, since some of our
sample did not include uncertainties on their cycle/rotation
periods, we weight all FGK cycles equally; for our M dwarfs,
we assume a ±20% uncertainty on τ .

Similarly, Figure 16 shows that FGK stars follow the

relation:

Pcyc

Prot
= (63.6± 1.1)× Ro−1.06±0.09, (5)
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suggesting that Pcyc ∝ τ for all stars, in contrast to the

results of Saar & Brandenburg (1999) - shown by the A

and I branches (which we have re-fit using our updated

sample).

Brandenburg et al. (1998); Saar & Brandenburg

(1999) interpreted the ratio of Pcyc/Prot as a measure of

the α effect, based on a simple αΩ dynamo model pro-

posed by Robinson & Durney (1982); Noyes et al. (1984).

In this framework, Equations 4 and 5 suggest that M

dwarfs have weaker α effects than FGK type stars at

equivalent Rossby numbers (note the scaling constant

in Equation 4 is 17.7 times smaller than in Equation

5). This result could be explained by considering the

physical properties of these stars. Since M-type stars

have deeper convective zones, and consequently larger

turnover times, longer rotation periods are needed to

get similar Rossby numbers. Longer rotation periods

therefore mean the Coriolis forces acting within these

convective zones will be smaller, resulting in less helical

turbulent convection. Furthermore, the average convec-

tive velocities themselves are lower in these cooler stars;

both these properties act to reduce the α effect.

Note, however, that the above explanation would sug-

gest a smooth transition from F to M in Figure 16. In

contrast, this figure shows a gap between FGK and M

stars. Perhaps, since M stars are (almost) fully con-

vective, and therefore have (almost) no tachocline, this

causes a significant change in the α effect. Alternatively,

this gap could simply be the result of our limited sample

of stars, which includes two K5s, a K7 but then no stars

until M3. Clearly, Figure 16 needs to be extended to

cover a wider range of stars, with a wide range of phys-

ical properties and rotation rates, to better understand

if this gap is real - and if so, and what may be causing

it.

4.5. α and Ω Effect Scaling

The axes of Figure 16 have the benefit of being di-

mensionless, and Ro in particular is directly related to

the mean-field dynamo number, D, as mentioned in Sec-

tion 4.1. Clusters and trends within the data can thus

provide insights into the underlying dynamo properties.

Indeed, we have already discussed the implications of

the scaling constants of Equations 4 and 5; below, we

discuss the implications of the power law indices of these

equations.

According to most theoretical models (e.g., Ruediger

& Kichatinov 1993), the α effect should be quenched

with growing magnetic fields, with the reasoning that

the stronger a star’s magnetic field, the more that cy-

clonic convection (i.e., the α effect) is suppressed. This

paradigm persisted until Saar & Brandenburg (1999)

found evidence suggesting that the α effect may be anti-

quenched on their A and I branches. Here, with the

benefit of a more focused sample of stars (no binary or

evolved stars), we reinvestigate these claims.

Using a 2-D non-linear dynamo model, Tobias (1998)

found:

Pcyc ∝ Dγ , (6)

where D is the dynamo number, and −0.67 ≤ γ ≤
−0.38. To explore the role of quenching in a simpler,

linear 1-D dynamo model, Saar & Brandenburg (1999)

defined a quenching index, q, such that:

D ∝ αΩ′ ∝ Ro−q−2, (7)

where Ω′ is the radial DR and:

q = qα + qΩ − 2, (8)

where qα is the quenching index of the α effect (i.e., α ∝
Ωqα , with Ω ≡ 2π

Prot
), and qΩ is the quenching index of the

Ω effect (i.e., Ω′ ∝ ΩqΩ). From solution of the standard

dynamo equations (assuming a fixed wavenumber, k),

Brandenburg et al. (1998) noted that the cycle frequency

was given by:

ωcyc ≡
2π

Pcyc
∝

(αΩ′kL

2

) 1
2

, (9)

where L is the dynamo length scale. Combining Equa-

tions 7 and 9, we have:

Pcyc ∝ (αΩ′)−
1
2 ∝ Ro

q
2 +1, (10)

or:
Pcyc

Prot
∝ Ro

q
2 . (11)

Since Figure 16 suggests that the relationship between

Pcyc/Prot-Ro can be described by a power law, where

the power law index can take on various values, we can

thus write:

Ro
q
2 ∝ Roδ, (12)

where δ is the power law index (i.e., δ = −1.04 from

Equation 4). Thus we find (combining Equations 8 and

12):

qα = 2δ − qΩ + 2. (13)

With this equation, we can infer the scaling of the α

effect using the power laws plotted in Figure 16. First,

however, we must estimate qΩ (the quenching index for

radial DR).

DR measurements are difficult, and fraught with

misidentifications (Aigrain et al. 2015; Basri 2018), but

since the good evidence suggests that surface DR scales

linearly with rotation period for slower rotators (e.g.,
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Saar 2011), it is reasonable to assume qΩ ≈ 1; for sat-

urated activity stars (discussed in Section 4.7), the de-

pendence reverses, and qΩ ≈ −1.7 (Saar 2011). We note

that we are implicitly assuming that radial DR scales

linearly with the measured surface DR.8 With this as-

sumption, and using these qΩ, we thus have:

qα = 2δ + 1, (14)

in the unsaturated regime, and:

qα = 2δ + 3.7, (15)

in the saturated regime. Using the power law indices

from Equations 4 and 5, we find: qα,M = −1.03 and

qα,FGK = −1.13 in the unsaturated regime, and qα,M =

1.67 and qα,FGK = 1.57 in the saturated regime. This

suggests that the α effect is quenched with faster ro-

tation in the unsaturated regime (but anti-quenched in

the saturated regime) similarly for FKG and M stars.

As mentioned previously, quenching of the α effect (in

the unsaturated regime) is an expected result. In con-

trast, the α effect anti-quenching that we find in the

saturated regime is surprising - though anti-quenching

is supported by some MHD simulations (e.g., Chatterjee

et al. 2011). We note that our findings in the unsatu-

rated regime disagree with the results of Saar & Bran-

denburg (1999), whose limited sample of stars (and dif-

ferent assumptions about Ω effect scaling) led to the op-

posite conclusion for their A and I branches (note that

the fit in Figure 16 is more consistent with their ten-

tative transitional branch for faster rotators; cf. Lehti-

nen et al. 2016). That said, it should be noted that

these results are based on a very simple dynamo model

(Brandenburg et al. 1998), along with some debated as-

sumptions about DR and α and Ω effect quenching (e.g.,

Barnes et al. 2005; Saar 2011).

4.6. Refining Our Selection of Convective Turnover

Times

The clustering of stars at the end of the FGK sequence

in Figure 16 (particularly around the putative I branch),

together with the spread of the sequence in Ro, suggest

that perhaps the concept of A and I branches is not

completely without merit. If we consider possible A and

I branches, though, we must note that we have not been

self-consistent in our use of τ . If the I branch is domi-

nated by a tachocline dynamo (as assumed for the Sun),

a local τ , τL, specifically computed for that location, is

8 Note, also, some observers (e.g., Barnes et al. 2005) argue DR
has little/no dependence on rotation period, so our assumed qΩ
may be incorrect.
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Figure 17. Similar to Figure 16 but with convective
turnover times for cycles on the I branch calculated at the
base of the convective envelope (i.e., using τL instead of τG).
The A and I branches were also ignored when fitting a power
law to the FGK stars.

more suitable. Further, a fit to all the FGK stars to-

gether becomes inappropriate; the faster rotators (using

τG, as before) and the slower, I branch stars (using τL)

should be treated separately. Using this distinction, we

present the results in Figure 17.

Due to reasons which will become clear in Section 4.7,

for stars with cycles on both the A and I branches, we

deem the I branch cycle to be the “primary” and the A

branch cycle the “secondary.” In a preliminary version

of Figure 17, secondary cycles were plotted also using

τL, but we noted this caused larger scatter in the “A

branch” fit (σ = 1.07 in log space). If we use τG for

these secondary cycles, effectively assuming they arise

from a convection zone dynamo still in operation, the

“A branch” scatter is reduced by ∼20% (σ= 0.81; Figure

17). These new values modify Equation 5 to be:

Pcyc

Prot
= (162.6± 0.2)× Ro−0.81±0.17, (16)

but do little to change the spirit of Section 4.5’s dis-

cussion. A list of different model parameters, their

goodness-of-fit metrics, and their implied qα values is

provided in Table 3.

4.6.1. GJ 358

If, as we propose in Section 4.6, F–K stars can have

convective zone and tachocline dynamos operating si-

multaneously, then, for consistency, we should also con-

sider this possibility for our partially convective M stars;

we note, once again, the exceptional cyclic behavior of

GJ 358. GJ 358 is one of (likely) four partially convec-

tive M stars in our sample, and is the only such star
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Table 3. Model Parameters for Pcyc/Prot = a × Ro−b Models.

Stars τ a σa b σb RMSE qα Used in

Included Excluded Unsat. Sat. Figures

M · · · G 3.6 1.2 1.02 0.06 0.17 -1.03 1.67 16,17,18

FGK · · · G 63.6 1.1 1.06 0.09 0.24 -1.13 1.57 16

I branch · · · G 112.1 1.2 -0.25 0.21 0.13 1.49 · · · 16

I branch · · · L 101.1 1.1 -0.05 0.24 0.15 1.10 · · · 17,18

A branch · · · G 380.3 1.4 -0.15 0.24 0.15 1.30 · · · 16,17,18

A branch · · · G,La 386.3 1.2 -0.12 0.14 0.14 1.25 · · · · · ·
FKG I branch G 124.0 1.2 0.83 0.11 0.20 -0.67 2.03 · · ·
FKG A and I branches G 162.6 1.6 0.81 0.17 0.12 -0.61 2.09 17,18

Note—a for stars with two cycles, τL was used for both if either was on the I branch. “τ” column denotes τ used when
estimating convective turnover time (G = global, L = local); “RMSE” column denotes root mean square error of model (in log
space); “Unsat.” column gives the qα value of the model in the unsaturated regime; “Sat.” column gives the qα value of the
model in the saturated regime.

to show strong evidence for multiple concurrent cycles.

Giving this star the same treatment as the F–K stars

from the previous section, we might conclude that these

cycles are from different dynamos. However, from a

sample size of one, the division between the “A” and

“I branches” for M stars is somewhat unclear.

Assuming GJ 358’s cyclic behavior is the result of sep-

arate tachocline and convective zone dynamos, then its

changing (notably, decreasing) cycle period makes some

sense. Since these two dynamos are (in our simple sce-

nario) independent, then the cyclic behavior that we see

is actually a superposition of two independent cycles;

if these cycles have different (quasi)periods,9 then ob-

serving a “cycle with a changing period” is not totally

surprising.

Using the I branch and M dwarf fits from Figure

17, we can infer theoretical cycle periods for GJ 358’s

tachocline and convective zone dynamos. Starting with

the tachocline dynamo (i.e., the I branch), we find

Pcyc = Prot × 101.1 × Ro0.05, which, when plugging in

the values (using τL to compute Ro), gives Pcyc = 6.5yr.

This is 2σ above the 4.7±0.9yr period we infer from GJ

358’s ASAS-3 data, which is the longest period we were

able to constrain for this star, and shifts it left in Figure

17 to Ro−1 ≈ 4 (extending the I branch to larger Ro−1).

Now considering the convective zone dynamo, using the

fit to all M stars, we find Pcyc = Prot × 3.6 × Ro−1.02,

which gives Pcyc = 4.4yr. This is consistent with the

aforementioned ASAS-3 cycle period, and with the same

Ro as shown in Figure 17. Perhaps these two dynamos

are not totally independent, and interactions between

the two cause more significant deviations from true pe-

9 Note: we know of no theoretical or observational motivation for
these cycles to have the same period.

riodic behavior than is typically observed in other stars,

resulting in the decreasing cycle period we observe in

Figure 10.

4.7. A New Interpretation of Dynamo Evolution

Indeed, our results here and those of Saar & Bran-

denburg (1999) may not necessarily be at odds; perhaps

we are seeing a switch in dominance between two dif-

ferent types of dynamos with different properties. We

largely set aside discussion of the A branch here, since

more recent work casts doubt on its robustness/reality

(e.g., Boro Saikia et al. 2018). We also skip discussion of

the “superactive” (S) branch, which is occupied almost

solely by binaries where tidal rotational locking may al-

ter the dynamo fundamentally and place it beyond the

scope of the presumed single star dynamos considered

here.

We propose the following scenario. The most rapid

rotators seem to have nearly solid-body rotation, for

example GJ 1243 (M4, Prot = 0.59d, k/k� =

(∆Ω/Ω)/(∆Ω�/Ω�) ≈ 0.01; Davenport et al. 2020), LQ

Hya (K2, Prot = 1.597d, k/k� = 0.028; Kovári et al.

2004), or V889 Her (G2, Prot = 1.337d, k/k� = 0.045;

Kővári et al. 2011). With so little DR, their dynamos

are likely a turbulent α2 type or at best α2Ω, with the

dynamo extant throughout the convection zone. This

concept is consistent with models (e.g., Guerrero et al.

2019), and some detailed MHD models get roughly the

same power law index for Pcyc/Prot ∝ Roδ: for example,

Warnecke (2018) obtain −0.89 ± 0.04, and if one does

a least-squares fit of the five long cycle models in Brun

et al. (2022) (which are clearly not on the I branch) us-

ing their “stellar” Ro, the slope is −0.90 ± 0.47. These

both compare well with our values of −1.06 ± 0.09 and

−0.81± 0.17.
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We therefore identify the fits found here as represent-

ing the initial, more turbulent, α-anti-quenched, full

convection zone dynamos. Stars on the ZAMS start

with rapid rotation, low DR and saturated magnetic

activity, likely with predominantly poloidal large scale

field structure (Donati & Landstreet 2009). As stars

lose angular momentum, they evolve from upper right

to lower left in Figure 16, with Pcyc/Prot decreasing,

and (if Saar 2011 is correct) increasing DR (sketched in

Figure 18; red arrows). DR increases to a maximum

point, at which point saturated magnetic activity stops,

the α effect starts becoming quenched, and further spin-

down leads to activity reduction along the well-known

rotation-activity relations.

(As a brief aside, we note that an interesting alterna-

tive to the full-convection zone dynamo, particularly in

M stars, is the idea of dynamo cycles driven by thermal

fluctuations (e.g., Nigro 2022). This could potentially

explain the lack of rotational dependence in M stars, as

the distribution of thermal fluctuations would primar-

ily depend on mass/Teff , echoed in the trend seen here

of Pcyc ∝ τ . The similar trend in faster rotating FGK

stars could also be influenced, at least in part, by such a

thermally driven dynamo. More work on these models

would be useful.)

At some point in partially convective stars, the radia-

tive core and convective envelope decouple (e.g., Mac-

Gregor & Brenner 1991), allowing a region of strong

shear to form at the interface (the tachocline). The

Sun and slower FGK rotators are thought to have αΩ

dynamos with the primary generation region in this

strong shear layer. M stars, lacking significant (or any)

tachoclines, cannot make this transition.

However, once the tachocline dynamo dominates in

older FGK stars, which happens at least by the time

the stars reach the I branch around Ro−1 = 1 to 3,

further cycle evolution proceeds along the I branch,

with Pcyc/Prot slightly increasing, or maybe remaining

roughly constant (shown by a blue arrow in Figure 18).

Perhaps there is a transitional phase of mixed dynamo

dominance before this, explaining the diffuse A “branch”

and abundance of stars with multiple cycles in this re-

gion. The recently noted “bend” in the chromospheric

rotation-activity relation (Lehtinen et al. 2021) may be

another reflection of this change. ZDI shows that large

scale toroidal fields already dominate well before the I

branch is reached, at around Ro−1 ≈ 15 (on the τC
scale used here, converted from Donati & Landstreet

2009), about where DR peaks and activity saturation

ends (shown by the right magenta dashed line in Fig-

ure 18). Perhaps this is where core/envelope decoupling

also takes place. Large scale toroidal field dominance
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yc

/P
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t
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F stars
G stars
K stars
M stars (ASAS-3/-4)
M stars (ASAS-SN)

Figure 18. Symbols and gray lines as in Figure 17, with
sketch of proposed dynamo evolution and MHD model trends
overlayed. Evolution begins on the ZAMS at high Ro−1 in
the upper right. Both FGK and M stars begin with α anti-
quenching α2 or α2Ω dynamos and initially low but increas-
ing DR (red arrows). Core/envelope decoupling in FGK stars
(possibly at at a peak in DR and the end of activity satura-
tion; right magenta dashed line) starts a phase of α quench-
ing, and the beginning of the formation of a tachocline, and
likely an α anti-quenched, tachocline based αΩ dynamo as
well. This dynamo does not dominate, however, until the
star reaches the I branch (blue), though there may be a
regime of mixed dynamo dominance first (purple), around
the time that large-scale poloidal fields become dominant
(left magenta dashed line). After further evolution on the I
branch, eventually the star slows to the point that the dy-
namo sputters, Maunder-like magnetic minima appear, Pcyc

lengthens, and in the end the cycle fails entirely, rotational
evolution ceases and the star evolves vertically off the dia-
gram (gold). In M stars, once activity saturation ends (right
magenta dashed line), an α-quenched α2 or α2Ω dynamo
takes over. 3D MHD models generally agree with the trends
found here for the Ms and fast rotating FGKs (e.g., Brun
et al. 2022, dashed black) and the I branch (Warnecke 2018,
dotted black). See text for more details.

only ends at Ro−1 ≈ 2Ro−1
� ≈ 1 (Donati & Landstreet

2009) - i.e., at about the time the star first reaches the

I branch. Note that no further stars are seen along the

−1.06 slope in Figure 16 among the FGK stars once the

I branch is reached. We view this as supporting the final

dominance of the tachocline dynamo.

Following the arguments using the same simple dy-

namo model, Saar & Brandenburg (1999) suggest the

change in slope at the I branch is due to α anti-

quenching, which implies (surprisingly) that here α in-

creases with the magnetic field (qα = 1.10 on the I

branch in Figure 17; Table 3). This might be due to

α in this regime being driven by magnetic buoyancy

and pumping effects (Chatterjee et al. 2011). Here
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again, some detailed MHD models are in reasonably

good agreement: a power law fit to the results of models

M1–4 of Warnecke (2018) (their slow-moderate rotators,

ignoring the very slowest) yields Pcyc/Prot = 213Ro0.514,

which lies between the A and I branches and is of similar

slope (shown by a dotted black line in Figure 18). As

noted above, we further suggest that some secondary cy-

cles are remnant convection zone dynamos still function-

ing as the tachocline dynamo ramps up to dominance.

This dual Pcyc - dual dynamo transitional regime cor-

responds to the purple transitional epoch arrow in the

dynamo evolution in Figure 18.

In the end, though, after further evolution along the I

branch, below a critical Ro−1, the dynamo may begin to

sputter (van Saders et al. 2016), the star begins to ex-

perience magnetic grand minima (Metcalfe et al. 2016),

differential rotation weakens (Metcalfe et al. 2022) or

may even reverse sign (Gastine et al. 2014; Karak et al.

2020), and the dynamo dies, with Pcyc going to infinity

(see, e.g., the lengthening Pcyc in the evolutionary se-

quence of G2 stars 18 Sco, the Sun, and α Cen A Judge

et al. 2017). With the cycling dynamo shut down, large-

scale fields driving spin-down vanish, stopping further

rotational evolution, and the star evolves vertically off

the diagram at constant Ro (e.g., Metcalfe & van Saders

2017, shown by a vertical gold arrow in Figure 18).

5. CONCLUSIONS

We have found evidence for magnetic activity cycles in

at least 12 M-type stars, and traces of cyclic behavior in

three more, using photometric time series. Of these 15

M dwarfs, approximately 12 are type M3.5 or later and

likely fully convective. For these cycles, we investigated

the correlation between cycle amplitude and period, and

found that this is reasonably well described by a power

law with an exponent of 0.94±0.11. We also found indi-

cations of multiple branches in this relation, potentially

in agreement with the findings of Saar & Brandenburg

(2002). However, the unclear nature of these additional

“cycles” (see Section 3.3) makes the latter less certain.

We further investigated correlations between cycle and

rotation period, cycle period and Rossby number, and

the ratio of cycle to rotation period and inverse Rossby

number. Our results suggest that the dynamo processes

acting within M dwarfs may not be as different from

those acting in FGK type stars (at least the more rapidly

rotating ones with Ro−1 < 3) as some previous mod-

els (e.g., Kitchatinov & Rüdiger 1999) suggest. Some

more recent models (e.g., Warnecke 2018; Brun et al.

2022, shown in Figure 18) appear to capture the over-

all trend for faster rotating FGK stars in Figure 17; if

similar models in fully convective M stars show similar

trends, theory and observations may be in reasonable

agreement.

Using Rossby number to parameterize magnetic activ-

ity, and a simple dynamo model (Saar & Brandenburg

1999), we find, at equivalent Rossby numbers, the α ef-

fect is similarly quenched with rotation (qα ≈ −1 in the

unsaturated regime), but is of reduced amplitude in M-

dwarfs compared to that of FGK stars. These findings

are in agreement with some models (e.g., Ruediger &

Kichatinov 1993), however are in apparent disagreement

with the results of Saar & Brandenburg (1999), whose

limited sample suggested a contrary relation (at least for

their A and I branches). However, we propose that what

we are actually seeing is the result of one type of dynamo

(an α-quenched α2 or α2Ω full convection zone dynamo),

present in all fast rotators (a thermally driven dynamo

is an alternative possibility). In FGK stars, once they

have spun down sufficiently, a tachocline-based α anti-

quenched αΩ dynamo takes over (forming the I branch

of Brandenburg et al. 1998). Fully convective M stars,

lacking tachoclines, spin down retaining their full con-

vective zone dynamos. We also find that the α effect

is again anti-quenched in the saturated regime, which

some theoretical models support under certain condi-

tions (e.g., Chatterjee et al. 2011).

Clearly, stellar cycles and the underlying physical

mechanisms are not yet fully understood. To follow up

this work, we suggest these stars be monitored using

ZDI, which can be used to determine large-scale mag-

netic field topology and polarity, and in the UV or X-

rays, which are much more sensitive and directly re-

lated to magnetic activity. These follow-up observations

would reveal whether the cycles presented in Table 1

are a result of global magnetic activity, or some other

phenomena (i.e. Rossby waves, etc.). It will be partic-

ularly useful to search for more cycles in K7-M2 stars,
which are lacking in our sample. These cycles may re-

veal whether the α effect transition from FGK to fully

convective M stars (Figure 16) is sharp or gradual. It is

also intriguing that δ (i.e, the power law slopes) appears

to remain constant through the joint α and DR tran-

sition when activity saturation ends (Section 4.7); we

propose that the implications of this for the underlying

dynamo should be explored.
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